Aiding the diagnosis of dissociative identity disorder: A pattern recognition study of brain biomarkers
Antje A.T.S. Reinders, Andre F. Marquand, Yolanda R. Schlumpf, Sima Chalavi, Eline M. Vissia, Ellert R.S. Nijenhuis, Paola Dazzan, Lutz Jäncke, Dick J. Veltman (2018). British Journal of Psychiatry. (Article available for members)
Background: A diagnosis of dissociative identity disorder (DID) is controversial and prone to under- and misdiagnosis. From the moment of seeking treatment for symptoms to the time of an accurate diagnosis of DID individuals received an average of four prior other diagnoses and spent 7 years, with reports of up to 12 years, in mental health services.
Aim: To investigate whether data-driven pattern recognition methodologies applied to structural brain images can provide bio- markers to aid DID diagnosis.
Method: Structural brain images of 75 participants were included: 32 female individuals with DID and 43 matched healthy controls. Individuals with DID were recruited from psychiatry and psy- chotherapy out-patient clinics. Probabilistic pattern classifiers were trained to discriminate cohorts based on measures of brain morphology.
Results: The pattern classifiers were able to accurately discriminate between individuals with DID and healthy controls with high sensitivity (72%) and specificity (74%) on the basis of brain structure. These findings provide evidence for a biological basis for distinguishing between DID-affected and healthy individuals.
Conclusions: We propose a pattern of neuroimaging biomarkers that could be used to inform the identification of individuals with DID from healthy controls at the individual level. This is important and clinically relevant because the DID diagnosis is controversial and individuals with DID are often misdiagnosed. Ultimately, the application of pattern recognition methodologies could prevent unnecessary suffering of individuals with DID because of an earlier accurate diagnosis, which will facilitate faster and targeted interventions.